13 research outputs found

    Convergent communication, sensing and localization in 6g systems: An overview of technologies, opportunities and challenges

    Get PDF
    Herein, we focus on convergent 6G communication, localization and sensing systems by identifying key technology enablers, discussing their underlying challenges, implementation issues, and recommending potential solutions. Moreover, we discuss exciting new opportunities for integrated localization and sensing applications, which will disrupt traditional design principles and revolutionize the way we live, interact with our environment, and do business. Regarding potential enabling technologies, 6G will continue to develop towards even higher frequency ranges, wider bandwidths, and massive antenna arrays. In turn, this will enable sensing solutions with very fine range, Doppler, and angular resolutions, as well as localization to cm-level degree of accuracy. Besides, new materials, device types, and reconfigurable surfaces will allow network operators to reshape and control the electromagnetic response of the environment. At the same time, machine learning and artificial intelligence will leverage the unprecedented availability of data and computing resources to tackle the biggest and hardest problems in wireless communication systems. As a result, 6G will be truly intelligent wireless systems that will provide not only ubiquitous communication but also empower high accuracy localization and high-resolution sensing services. They will become the catalyst for this revolution by bringing about a unique new set of features and service capabilities, where localization and sensing will coexist with communication, continuously sharing the available resources in time, frequency, and space. This work concludes by highlighting foundational research challenges, as well as implications and opportunities related to privacy, security, and trust

    Radio resource sharing with edge caching for multi-operator in large cellular networks

    No full text
    Abstract The aim of this thesis is to devise new paradigms on radio resource sharing including cache-enabled virtualized large cellular networks for mobile network operators (MNOs). Also, self-organizing resource allocation for small cell networks is considered. In such networks, the MNOs rent radio resources from the infrastructure provider (InP) to support their subscribers. In order to reduce the operational costs, while at the same time to significantly increase the usage of the existing network resources, it leads to a paradigm where the MNOs share their infrastructure, i.e., base stations (BSs), antennas, spectrum and edge cache among themselves. In this regard, we integrate the theoretical insights provided by stochastic geometrical approaches to model the spectrum and infrastructure sharing for large cellular networks. In the first part of the thesis, we study the non-orthogonal multi-MNO spectrum allocation problem for small cell networks with the goal of maximizing the overall network throughput, defined as the expected weighted sum rate of the MNOs. Each MNO is assumed to serve multiple small cell BSs (SBSs). We adopt the many-to-one stable matching game framework to tackle this problem. We also investigate the role of power allocation schemes for SBSs using Q-learning. In the second part, we model and analyze the infrastructure sharing system considering a single buyer MNO and multiple seller MNOs. The MNOs are assumed to operate over their own licensed spectrum bands while sharing BSs. We assume that multiple seller MNOs compete with each other to sell their infrastructure to a potential buyer MNO. The optimal strategy for the seller MNOs in terms of the fraction of infrastructure to be shared and the price of the infrastructure, is obtained by computing the equilibrium of a Cournot-Nash oligopoly game. Finally, we develop a game-theoretic framework to model and analyze a cache-enabled virtualized cellular networks where the network infrastructure, e.g., BSs and cache storage, owned by an InP, is rented and shared among multiple MNOs. We formulate a Stackelberg game model with the InP as the leader and the MNOs as the followers. The InP tries to maximize its profit by optimizing its infrastructure rental fee. The MNO aims to minimize the cost of infrastructure by minimizing the cache intensity under probabilistic delay constraint of the user (UE). Since the MNOs share their rented infrastructure, we apply a cooperative game concept, namely, the Shapley value, to divide the cost among the MNOs.Tiivistelmä Tämän väitöskirjan tavoitteena on tuottaa uusia paradigmoja radioresurssien jakoon, mukaan lukien virtualisoidut välimuisti-kykenevät suuret matkapuhelinverkot matkapuhelinoperaattoreille. Näiden kaltaisissa verkoissa operaattorit vuokraavat radioresursseja infrastruktuuritoimittajalta (InP, infrastructure provider) asiakkaiden tarpeisiin. Toimintakulujen karsiminen ja samanaikainen olemassa olevien verkkoresurssien hyötykäytön huomattava kasvattaminen johtaa paradigmaan, jossa operaattorit jakavat infrastruktuurinsa keskenään. Tämän vuoksi työssä tutkitaan teoreettisia stokastiseen geometriaan perustuvia malleja spektrin ja infrastruktuurin jakamiseksi suurissa soluverkoissa. Työn ensimmäisessä osassa tutkitaan ei-ortogonaalista monioperaattori-allokaatioongelmaa pienissä soluverkoissa tavoitteena maksimoida verkon yleistä läpisyöttöä, joka määritellään operaattoreiden painotettuna summaläpisyötön odotusarvona. Jokaisen operaattorin oletetaan palvelevan useampaa piensolutukiasemaa (SBS, small cell base station). Työssä käytetään monelta yhdelle -vakaata sovituspeli-viitekehystä SBS:lle käyttäen Q-oppimista. Työn toisessa osassa mallinnetaan ja analysoidaan infrastruktuurin jakamista yhden ostaja-operaattorin ja monen myyjä-operaattorin tapauksessa. Operaattorien oletetaan toimivan omilla lisensoiduilla taajuuksillaan jakaen tukiasemat keskenään. Myyjän optimaalinen strategia infrastruktuurin myytävän osan suuruuden ja hinnan suhteen saavutetaan laskemalla Cournot-Nash -olipologipelin tasapainotila. Lopuksi, työssä kehitetään peli-teoreettinen viitekehys virtualisoitujen välimuistikykenevien soluverkkojen mallintamiseen ja analysointiin, missä InP:n omistama verkkoinfrastruktuuri vuokrataan ja jaetaan monen operaattorin kesken. Työssä muodostetaan Stackelberg-pelimalli, jossa InP toimii johtajana ja operaattorit seuraajina. InP pyrkii maksimoimaan voittonsa optimoimalla infrastruktuurin vuokrahintaa. Operaattori pyrkii minimoimaan infrastruktuurin hinnan minimoimalla välimuistin tiheyttä satunnaisen käyttäjän viive-ehtojen mukaisesti. Koska operaattorit jakavat vuokratun infrastruktuurin, työssä käytetään yhteistyöpeli-ajatusta, nimellisesti, Shapleyn arvoa, jakamaan kustannuksia operaatoreiden kesken

    Radio resource sharing and edge caching with latency constraint for local 5G operator:geometric programming meets Stackelberg game

    No full text
    Abstract We develop a novel game-theoretic framework with geometric programming to model and analyze cache-enabled base stations (BSs) with infrastructure sharing for local 5G operator (OP) networks. In such a network, the local 5G OP provides wireless network in indoor area and rents out the infrastructure which are RAN and cache storage to multiple mobile network operators (MNOs) while guarantee the quality-of-experience (QoE) at the users (UEs) of MNOs. We formulate a Stackelberg game model where the local 5G OP is the leader and the MNOs are the followers. The local 5G OP aims to maximize its profit by optimizing its infrastructure rental fee, and the MNOs aim to minimize their renting cost of infrastructure by minimizing the “cache intensity” subject to latency constraint at each UE. The optimization problems of the local 5G OP and the MNOs are transformed into geometric programming. Accordingly, the Stackelberg equilibrium is obtained through the succesive geometric programming method. Since the MNOs share their rented infrastructure, for cost sharing, we apply the concept of Shapley value to divide the cost among the MNOs. Finally, we present an extensive performance evaluation that reveals interesting insights into designing resource sharing with edge caching in local 5G OP networks

    Edge caching for cache intensity under probabilistic delay constraint

    No full text
    Abstract In order to reduce the latency of data delivery, one of techniques is to cache the popular contents at the base stations (BSs) i.e. edge caching. However, the technique of caching at edge can only reduce the backhaul delay, other techniques such as BS densification will also need to be considered to reduce the fronthaul delay. In this work, we study the trade-offs between BS densification and cache size under delay constraint at a typical user (UE). For this, we use the downlink SINR coverage probability and throughput obtained based on stochastic geometrical analysis. The network deployment of BS and cache storage is introduced as a minimization problem of the product of the BS intensity and cache size which we refer to the product of “cache intensity” under probabilistic delay constraint. We examine the cases when (i) either BS intensity or the cache size is held fixed, and (ii) when both BS intensity and the cache size are vary. For the case when both BS intensity and the cache size are variable, the problem become nonconvex and we convert into a geometric programing which we solve it analytically

    Inter-operator infrastructure sharing:trade-offs and market

    No full text
    Abstract We model the problem of infrastructure sharing among mobile network operators (MNOs) as a multiple-seller single-buyer market where the MNOs are able to share their own base stations (BSs) with each other. First, we use techniques from stochastic geometry to find the coverage probability of the infrastructure sharing system and analyze the trade-off between increasing the transmit power of a BS and the BS intensity of a buyer MNO required to achieve a given quality-of-service (QoS) in terms of the coverage probability. We show that when the transmit power of the BSs and/or the BS intensity of a network increases, the system becomes interference limited and the coverage probability tends to saturate at a certain value. As such, when the required QoS is set above this bound, an MNO can improve its coverage by buying infrastructure from other MNOs. Subsequently, we analyze the strategy of a buyer MNO on choosing how many MNOs and which MNOs to buy the infrastructure from. The optimal strategy of the buyer is given by greedy fractional knapsack algorithm. On the sellers’ side, the pricing problem and the problem of determining the fraction of infrastructure to be sold are formulated using a Cournot oligopoly game

    Network slicing with mobile edge computing for micro-operator networks in beyond 5G

    No full text
    Abstract We model the scenarios of network slicing allocation for the micro-operator (MO) network. The MO creates the slices “as a service” of wireless resource and then allocates these slices to multiple mobile network operators (MNOs). We propose the slice allocation problem of multiple MNOs with the goal of maximizing the social welfare of the network defined as sum rate of all MNOs. The many-to-one matching game framework is adopted to solve this problem. Then, the generic Markov Chain Monte Carlo (MCMC) method is introduced for the computation of game theoretical solution. After the MNOs obtain the slices, for each small cell base station (SBS), we investigate the role of power allocation using Q-learning and uniform power. We numerically show that the solution of the matching game leads to two-sided stable matching. Furthermore, for each MNO, we explore the problem of infrastructure cost minimization constrained on the latency at the user equipment (UE). The optimal solution is given by a greedy fractional knapsack algorithm. We illustrate that it is sufficient for the MNO to use a small fraction of the SBS to serve the UE while satisfying the latency constraint. For the problem of overall data rate maximization, we numerically show that the power allocation has significant effect on the social welfare of the system

    Infrastructure sharing for mobile network operators:analysis of trade-offs and market

    No full text
    Abstract The conflicting problems of growing mobile service demand and underutilization of dedicated spectrum has given rise to a paradigm where mobile network operators (MNOs) share their infrastructure among themselves in order to lower their operational costs, while at the same time increase the usage of their existing network resources. We model and analyze such an infrastructure sharing system considering a single buyer MNO and multiple seller MNOs. Assuming that the locations of the BSs can be modeled as a homogeneous Poisson point process, we find the downlink signal-to-interference-plus-noise ratio (SINR) coverage probability for a user served by the buyer MNO in an infrastructure sharing environment. We analyze the trade-off between increasing the transmit power of a base station (BS) and the intensity of BSs owned by the buyer MNO required to achieve a given quality-of-service (QoS) in terms of the SINR coverage probability. Also, for a seller MNO, we analyze the power consumption of the network per unit area (i.e., areal power consumption) which is shown to be a piecewise continuous function of BS intensity, composed of a linear and a convex function. Accordingly, the BS intensity of the seller MNO can be optimized to minimize the areal power consumption while achieving a minimum QoS for the buyer MNO. We then use these results to formulate a single-buyer multiple-seller BS infrastructure market. The buyer MNO is concerned with finding which seller MNO to purchase from and what fraction of BSs to purchase. On the sellers’ side, the problem of pricing and determining the fraction of infrastructure to be sold is formulated as a Cournot oligopoly market. We prove that the iterative update of each seller’s best response always converges to the Nash Equilibrium

    Resource virtualization with edge caching and latency constraint for local B5G operator

    No full text
    Abstract The rapidly increasing demand in indoor smallcell networks has given rise to the concept of local beyond 5G (B5G) operator (OP) for local service delivery. The local B5G OP aims to provide wireless network using licensed subbands in an indoor area and tries to gain profits by renting out the infrastructure to the mobile network operators (MNOs). With local B5G OP deployment, the quality of service (QoS) can be guaranteed at mobile broadband users (UEs) and smart devices, i.e., machine type communications (MTC) and ultra reliable low latency (uRLLC). In this paper, we consider the scenario that the local B5G OP aims to maximize profit by optimizing its infrastructure rental fee while renting out cache-enabled smallcell base stations (SBSs) to the MNOs. Each MNO tries to minimize the cache intensity subject to latency constraint at mobile UE. The concept of infrastructure sharing is also deployed at the local B5G OP such that multiple MNOs can utilize the same cache-enabled SBSs simultaneously and the local B5G OP will cache the popular files according to the MNO’s largest demand. The optimization problems of the local B5G OP and the MNOs can be transformed into geometric programming problems. Then, we show that the Stackelberg equilibrium is obtained through successive geometric programming (SGP) method. Lastly, we perform an extensive performance evaluation that reveals interesting insights including the optimal SBS intensity that MNOs should rent from the local B5G OP as to satisfy end-to-end latency, 10 -3 sec, of data transmission from each SBS to UE. The optimal price of renting out infrastructure for the local B5G OP at the Stackelberg equilibrium is also illustrated

    Adaptive beamforming design for mmWave RIS-aided joint localization and communication

    Get PDF
    Abstract The concept of reconfigurable intelligent surface (RIS) has been proposed to change the propagation of electromagnetic waves, e.g., reflection, diffraction, and refraction. To accomplish this goal, the phase values of the discrete RIS units need to be optimized. In this paper, we consider RIS-aided millimeter-wave (mmWave) multiple-input multiple-output (MIMO) systems for both accurate positioning and high data-rate transmission. We propose an adaptive phase shifter design based on hierarchical codebooks and feedback from the mobile station (MS). The benefit of the scheme lies in that the RIS does not require deployment of any active sensors and baseband processing units. During the update process of phase shifters, the combining vector at the MS is sequentially refined. Simulation results show the performance improvement of the proposed algorithm over the random phase design scheme, in terms of both positioning accuracy and data rate. Moreover, the performance converges to that of the exhaustive search scheme even in the low signal-to-noise ratio regime

    Multi-operator spectrum sharing for small cell network:a matching game perspective

    No full text
    Abstract One of the many problems faced by current cellular network technology is the underutilization of the dedicated licensed spectrum of network operators. An emerging paradigm to solve this issue is to allow multiple operators to share some parts of each other’s spectrum. Previous works on spectrum sharing have failed to integrate the theoretical insights provided by recent developments in stochastic geometrical approaches to cellular network analysis with the objectives of network resource allocation problems. In this paper, we study the non-orthogonal spectrum assignment with the goal of maximizing the social welfare of the network, defined as the expected weighted sum rate of the operators. We adopt the many-to-one stable matching game framework to tackle this problem. Moreover, using the stochastic geometrical approach, we show that its solution can be both stable as well as socially optimal. To obtain the maxima of social welfare, the computation of the game theoretical solution using the generic Markov Chain Monte Carlo method is proposed. We also investigate the role of power allocation schemes using Q-learning, and we numerically show that the effect of resource allocation scheme is much more significant than the effect of power allocation for the social welfare of the system
    corecore